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Molecular rotation in the presence of intramolecular vibrational
energy redistribution

JOHN KESKE, DAVID A. M c WHORTER

and BROOKS H. PATE

Department of Chemistry, University of Virginia,
Charlottesville, VA 22901, USA

At high energy, the vibrational dynamics of a polyatomic molecule are qual-
itatively diŒerent from the separable normal-mode dynamics that characterize
the low energy region of the spectrum. Once the total rovibrational state density
exceeds 10± 100 states cm 1, the eŒects of intramolecular vibrational energy re-
distribution (IVR) are readily observed in the frequency-domain spectrum. In an
energy region where IVR occurs, the time scale for the ¯ ow of vibrational energy
is comparable to the time scale for molecular rotation. The jostling of nuclear
positions caused by the IVR dynamics leads to a time-dependent moment of
inertia for the molecular rotation. The time-dependent modulation of the mo-
ment of inertia, in turn, aŒects the appearance of the rotational spectrum of the
molecule. These eŒects can be described by the motional narrowing formalism
® rst developed for nuclear magnetic resonance spectroscopy. We present a basic
description of the rotational problem for the case where the molecule has a single
energetically accessible nuclear geometry and the case where the total energy of
the molecule is above the barrier to isomerization. In the latter case, the micro-
canonical isomerization rate can be obtained from the overall line shape of the
rotational spectrum. An example of using rotational spectroscopy to measure the
isomerization rate of 4-chlorobut-1-yne at 3330 cm 1 is presented.

1. Introduction : models of intramolecular vibrational energy redistribution

and conformationa l isomerization

This review describes our recent work on the rotational spectroscopy of molecules

excited to an energy where intramolecular vibrational energy ¯ ow occurs. We focus

on two aspects of this work: (1) the description of the rotational motion of a

highly excited molecule and (2) the measurement of microcanonical rate constants
for conformational isomerization reactions. The ® rst topic, which comprises most

of this review, provides the theoretical framework for high-resolution spectroscopy

of single quantum states of the molecular Hamiltonian in energy regions where

intramolecular vibrational energy redistribution (IVR) occurs. Here we present the

ways that our understanding of molecular rotational spectroscopy must be amended

from the simple theory used for quantum states at low energy (e.g. the pure rotational
levels of the molecule) [1, 2]. The development of the theory for this problem uses

the motional, or exchange, narrowing theories that were originally developed for

nuclear magnetic resonance (NMR) spectroscopy [3, 4].

The second goal of this review is to present an application of this new form
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364 J. Keske et al.

of high-resolution molecular spectroscopy to the ® eld of chemical kinetics. The

problem we address is the kinetics of unimolecular isomerization reactions. A
unique feature of the measurement technique is that we are able to directly measure

the microcanonical rate constant for isomerization, k(E,J). In unimolecular reaction

rate theory, this rate constant is often calculated via statistical theories such as

the widely used Rice, Ramsperger, Kassel and Marcus (RRKM) theory [5, 6]. By

contrast, most other kinetics techniques measure the canonical rate constant, k(T ).
Additional complexity is added to the unimolecular reaction theory in this case.

For example, the e� ciency of collisional excitation, a di� cult problem in its own

right, must be determined in order to calculate the ensemble average rate constant.

Therefore, using the measurement methods described in this review it is possible

to explicitly test the validity of the fundamental assumptions in statistical theories.
To this point in our work, we ® nd that RRKM theory grossly overestimates the

microcanonical rate constant for the conformational isomerization process.

Additionally, through a combination of high-resolution infrared spectroscopy

and our new methods for rotational spectroscopy of highly excited molecules we

can gain some insight into the extent of mode-speci® city in fundamental kinetics

processes. This ability derives from the fact that infrared absorption spectroscopy
and the rotational spectroscopy of s̀tatistically mixed’ quantum states measure

qualitatively diŒerent types of dynamics. These diŒerences are an example of the

principle that guides spectroscopic studies of chemical dynamics: ẁhat you pluck is

what you see’ [7]. The infrared spectrum provides mode-speci® c information about

the fundamental chemical processes, such as IVR, following energy deposition in
a single vibrational mode. In our infrared studies this initial vibrational mode is a

bond-localized hydride stretch motion. Our new rotational measurement techniques

work in the opposite limit. We use long-pulsed laser excitation to excite single

quantum states of the full molecular Hamiltonian. With respect to a normal-mode

vibration basis set, these quantum states are highly mixed. In a time-dependent view
of the spectroscopy, we have allowed the molecule to s̀tatistically relax’ during the

excitation step. The subsequent rotational spectroscopy that we perform measures

the ènsemble average’ dynamics of the molecule. As will be illustrated for the case of

isomerization, the mode-speci® c (infrared) and statistically relaxed (single eigenstate

rotational spectroscopy) dynamics can behave quite diŒerently. Therefore, we are

uniquely able to quantify the extent of mode-speci® city in the isomerization kinetics.
We have omitted any discussion of experimental techniques in this review.

Instead we focus on the essential features of the spectroscopy and the way that

it can be used to study isomerization kinetics. The reader can ® nd the details of

our experimental approach in the recent literature [8, 9, 10]. We expect that new

experimental techniques with higher sensitivity will emerge in the future to extend the
scope of chemical problems that can be studied through this form of spectroscopy.

1.1. Frequency domain measurements of intramolecular dynamics
The theoretical foundation for the rotational spectroscopy of highly excited

quantum states is the description of high-resolution spectroscopy in regions where
intramolecular energy ¯ ow occurs. This description of spectroscopy was ® rst de-

veloped in the context of radiationless transitions for excited state processes and

is illustrated by the s̀tandard model’ for IVR shown in ® gure 1 [11, 12, 13]. The

description is general and also applies to IVR in the ground electronic state, which

is the starting point for this work. In this general formulation, the full molecular
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Molecular rotation in the presence of IV R 365

Figure 1. A standard model for IVR. The b̀right’ zeroth-order state has some transition
probability from the ground state. Nearby in energy there is a set of d̀ark’ or bath
states with zero transition probability from the ground state. The interaction (W)
between the bright and bath states (equation (1.2)) produces the set of molecular
eigenstates (equation (1.3)). The intensity of each eigenstate in the observed spectrum
is proportional to contribution that the bright state makes to the molecular eigenstate
composition (equation (1.4)).

Hamiltonian is divided into a simple, zeroth-order term, H0, and the higher-order
interactions in the Hamiltonian, W .

H = H0 + W . (1.1)

For the IVR process, H0 is usually taken to be the molecular Hamiltonian

for the normal-mode vibration and distortable-rotor problem [14, 15]. In the most

general case, the eigenfunctions are direct products of the vibrational wavefunctions

(themselves direct products of the 3N ± 6 harmonic oscillator wavefunctions for each

normal mode) and an asymmetric-top rotational wavefunction

 (0) = v JKaK c = v1, v2, . . . , v3N 6 JKaK c . (1.2)

The remaining terms in the Hamiltonian (W ) lead to interactions between the
eigenfunctions of H0 through anharmonic or rotationally mediated (e.g. Coriolis or

centrifugal interactions [16]) coupling mechanisms. There are two sets of functions

used to describe the spectroscopy and dynamics in IVR. The ® rst set, the eigenfunc-

tions of H0, are given by equation (1.2). The second set are the eigenfunctions of the

full Hamiltonian, H. The quantum states associated with the full Hamiltonian are
often called the exact molecular eigenstates (or just the molecular eigenstates). By

completeness, the molecular eigenstates can be represented in the zeroth-order basis

u i = cb  (0)
b + c1  (0)

1 + c2  (0)
2 + . (1.3)

It is often the case that only a single eigenfunction of H0 in the energy region

of interest has appreciable transition intensity from the ground vibrational state.

This eigenstate of H0 is then called the b̀right’ state and is denoted by  (0)
b in

equation (1.3). The remaining eigenfunctions of H0 are called the d̀ark’ states or
bath states.

In the ideal high-resolution infrared spectroscopy measurement, the spectrum is

fully resolved to the molecular eigenstate level. In this case, the intensity for each

transition to a single eigenstate is determined by the character of the bright state in
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366 J. Keske et al.

the eigenfunction

Ii = u i l 0, JKaKc
2 = cb

2  (0)
b l 0, JKaK c

2, (1.4)

where the initial state is assumed to be a pure rotational level. The sum of the

intensities for all eigenstates is conserved and equal to the intensity of the bright-

state transition in the zeroth-order basis set. Over the past decade there have

been signi® cant advances in molecular beam spectroscopy techniques that make it
possible to obtain eigenstate-resolved spectra of large polyatomic molecules [17,

18, 19, 20, 21]. In particular, double-resonance techniques have been developed that

provide simpli® cation of the complicated spectra that result from the combination of

fragmentation of infrared intensity by IVR dynamics and the overlap of rovibrational

transitions [8, 22, 23]. As a result, it is possible to obtain fully state-resolved
information about the IVR dynamics.

Eigenstate-resolved spectroscopy of large polyatomic molecules is aimed at mea-

suring the time scale for IVR [21, 24]. From a fully-resolved rovibrational spectrum,

the dynamics for the IVR process of the bright state can be calculated. The fre-
quency and relative intensity information in the high-resolution spectrum is su� cient

to calculate a single dynamical quantity, the survival probability of the bright state

given by [25]

P(t) = W (0) W (t) 2 =  (0)
b W (t) 2 =

i j

IiIj cos
Ei Ej

t . (1.5)

This calculation provides the same dynamical information that would be obtained

in the ideal single-colour, pump-probe measurement in the time domain [26, 27].

For excitation with a short laser pulse, the initial state ( W (0)) created through the

molecule± ® eld interaction is the bright state. At energies where IVR operates, this
state is not an eigenfunction of the full Hamiltonian and will evolve in time.

For a simple exponential decay of the survival probability, the line shape pro� le
of the eigenstate-resolved spectrum is Lorentzian. Because the system is bound
for a stable molecule, there are discrete eigenstates of the Hamiltonian. The high-

resolution spectrum will consist of a set of transitions whose intensities ¯ uctuate

around the smooth line shape pro® le [28]. The homogeneous line width of a single
eigenstate transition is determined by the infrared ¯ uorescence lifetime of the state

(this lifetime contribution is not included in equation (1.5)). However, the key

spectral feature used to interpret mode-speci ® c IVR dynamics is the overall line
shape pro® le. An experimental example of a high-resolution infrared spectroscopy

measurement of the IVR dynamics, and the survival probability calculated from the

spectrum, is shown in ® gure 2 [29].

This standard model of IVR and the connection to high-resolution spectroscopy

is often criticized based on the fact that the choice of the zeroth-order basis set is

arbitrary. However, there are good reasons to choose the normal-mode ± distortable

rotor basis set for this problem. Most importantly, the transition dipole operator is

(nearly) diagonal in this basis set. Therefore, it is easy to determine the nature of
the excited state following coherent, short-pulse excitation (i.e. the eigenstate of H0

that has a non-zero transition dipole matrix element). In this sense, the light ® eld

suggests an appropriate basis set for the problem. In a dynamics sense, the zeroth-

order basis set we have chosen is a good basis for the short-time dynamics. Secondly,

the chosen basis set is convenient for a physical description of the IVR process. The
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Molecular rotation in the presence of IV R 367

Figure 2. A high-resolution infrared spectra of 2-¯ uoroethanol. The extensive fragmentation
of the spectra is an indication of IVR. This spectra is taken using an electric resonance
optothermal spectrometer (EROS) [8]. Using a microwave-infrared technique two
spectra (331 ± 221 (top) and 330 ± 220 (bottom)) are recorded at the same time, with
opposite phase. The survival probability calculated from the 331 ± 221 spectrum is
shown on the right giving an IVR lifetime of 308 ps.

normal-mode nuclear motions can be calculated and visualized in a straightforward
manner. Especially simple physical pictures of the initial nuclear motion p̀lucked’

by the light ® eld occur when the bright state is a local-mode motion, such as an

isolated hydride stretch.

A strong limitation to high-resolution spectroscopy (or, equivalently, single-

colour pump-probe measurements in the time domain) is that the survival probability

constitutes the only dynamical quantity directly available from the spectrum. Direct

information about the pathways and time scales of subsequent events in the energy

redistribution process is unavailable from the high-resolution measurement. The
important chemical questions of where does the energy go and how does it get

there remain largely unanswered by this experimental approach. Additionally, the

measurement provides quantitative information about the dynamics of a single
zeroth-order state. This state may be one of thousands to millions (and more) of

quantum states in each 1 cm 1 interval of a large polyatomic molecule even at low
energy (3000 cm 1). The dynamics of the bright states may not be indicative of the

average dynamics in the energy region [30, 31, 32]. The techniques described in this

review take steps to address these basic limitations by providing ways to determine

the average IVR rates in a given energy region and to investigate subsequent

dynamical events, such as isomerization, in the IVR process.

1.2. Spectroscopic model for isomerization kinetics
In the case where a molecule can undergo isomerization, the simple model for

IVR shown in ® gure 1 needs to be augmented. We are interested in the rota-

tional spectroscopy of a molecule excited to an energy that exceeds the barrier to
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368 J. Keske et al.

Figure 3. Generalized isomerization reaction potential. If a molecule (A) is excited to an
energy above the barrier to isomerization it can isomerize (A B) at a rate described
by the microcanonical rate constant k(E).

isomerization, as depicted in ® gure 3. Isomerization reactions have a key feature

that strongly in¯ uences the spectroscopy: the Hamiltonian remains bound during

reaction [33]. Therefore, unlike the case of unimolecular dissociation where a true

continuum exists, the quantum states involved in the dynamics are discrete molecular
eigenstates. To describe the conformational properties of the quantum states above

the barrier to isomerization we use the model shown in ® gure 4 [34]. In this model,

we adiabatically separate the torsional coordinate, which is the reaction coordinate

for isomerization, from the other normal-mode vibrational coordinates. For each of

the normal-mode states we de® ne an eŒective torsional potential. In most cases it
is expected that the torsional potential for the normal-mode vibrational state will

have a similar shape to the potential for the ground vibrational state.

In this picture, the diŒerent torsional surfaces built upon the normal-mode

vibrational states resemble diŒerent electronic states. The spectroscopy between

torsion± vibrational states would be expected to behave in a similar manner to vibra-

tional spectroscopy between electronic states in the Franck± Condon approximation .
Experimentally this model is validated by the fact that the torsional dependence

of normal-mode vibrational frequencies is small, except for a few modes that are

obviously coupled to the reaction coordinate [35, 36, 37]. Additionally, the infrared

spectrum is typically dominated by transitions where the torsional quantum number

remains unchanged. In the context of the adiabatic model, this fact suggests that
the Franck± Condon-like overlap between torsional states of diŒerent normal-mode

states is dominated by the diagonal term and, therefore, the shapes of the potential

are nearly the same.

The torsion-normal-mode direct product states can be used as the zeroth-order

basis set for discussing intramolecular dynamics and isomerization. In this model,

there are basis states with energies exceeding the barrier to isomerization that still
have well-de® ned conformational structure. For example, the energy of the hydride

stretch normal-mode state is about 3000 cm 1 above the ground vibrational state

whereas typical barriers to conformational isomerization are about 1000 cm 1. In

the model of ® gure 4, the spectroscopy of the hydride stretch would involve a

transition from the lowest torsional state of the ground vibrational state to the
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Molecular rotation in the presence of IV R 369

Figure 4. One-dimensional torsional isomerization problem. With this zeroth-order descrip-
tion isomerization occurs due to interactions between states localized around diŒerent
minima. Each normal-mode vibrational state has its own potential energy curve. For
clarity, the torsional potentials for the two b̀ath’ states have been shifted. In this
energy region, the zeroth-order C± H stretch bright state can couple to delocalized
torsional states or states from a diŒerent conformer that have approximately the
same energy. These interactions produce s̀tructurally mixed’ eigenstates of the full
Hamiltonian.

lowest torsional state in the potential built on the hydride stretch. Both initial and

® nal states have well-de® ned conformational structure. This model just re¯ ects the

fact that vibrational excitation of the hydride stretch is expected to simply p̀luck’
the C± H stretch, leaving the conformational structure unchanged. As will be shown

later, the rotational band contours of the hydride stretches usually have structures

characteristic of the lowest energy conformer. In other words, the bright state does

have a well-de® ned conformational geometry as suggested by the model.

Using the torsion± normal-mode basis set we can now consider the eŒects caused

by intramolecular vibrational energy redistribution. The intramolecular interactions

in the Hamiltonian will mix the zeroth-order basis states that have approximately
the same total energy. In this model, the near-resonant basis states include quantum

states with geometries localized around the diŒerent stable minima of the torsional

surface as well as states where the torsional wavefunction is delocalized over the

full torsional space. The interaction terms in the Hamiltonian will lead to molecular

eigenstates that contain contributions from all of the interacting basis states. In
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370 J. Keske et al.

Figure 5. A simpli® ed diagram of the rovibrational quantum states of a polyatomic molecule.
At low energy the states are separable and the normal-mode approximation is valid.
Above a threshold energy, the state density is su� ciently high (> 10 states cm 1) that
the quantum states are mixed through IVR. Spectroscopy between these states can be
divided into three types. (1) Spectroscopy between the low energy states, which follows
the usual rotation± vibration description [1, 2]; (2) spectroscopy from a low energy
state into the highly mixed regime (IVR measurements, see ® gure 1); (3) spectroscopy
between the highly mixed states (the subject of this review).

this sense, the wavefunctions contain contributions from reactant, product and the

delocalized states. We have called the quantum states in this regime s̀tructurally
mixed’ [34].

1.3. Types of spectroscopy for polyatomic molecules
The previous sections provided a description of high-resolution rotation± vibration

spectroscopy for molecules where IVR occurs and the relationship of the spectrum to

mode-speci® c intramolecular dynamics. From an extensive set of experiments it has
been found that the characteristics of spectroscopy in this regime, e.g. fragmentation

of the oscillator strength over several molecular eigenstates, become prevalent when

the rovibrational state density reaches 10± 100 states cm 1[21, 38, 39]. This threshold

state density is already reached for the hydride stretch vibrations (3000 cm 1) for

medium sized molecules with about 10 atoms [17]. The existence of a well-de® ned

onset for IVR provides a way to characterize the types of spectroscopy that can
occur. This description is illustrated in ® gure 5.

Below the threshold for extensive state-mixing caused by IVR, the quantum

states of the Hamiltonian are well approximated by the zeroth-order basis states.

Spectroscopy between quantum states below the IVR threshold falls into the category

of s̀tandard’ molecular spectroscopy. The energy level patterns and selection rules
in this energy regime are well known and are presented in several textbooks on

molecular spectroscopy [1, 2, 14, 15]. Of course even in this regime there are

problems of great current interest, most notably the spectroscopy of large-amplitude

motions in molecules and clusters of molecules [40, 41, 42]. However, for a typical

molecule with well-de® ned nuclear geometry this type of spectroscopy has been
described in extensive detail.

The second type of spectroscopy that can be performed involves transitions

from a quantum state below the IVR threshold (typically a rotational level of

the ground vibrational state) to quantum states above this threshold [21, 24]. The

standard theoretical model for this problem is shown in ® gure 1 and was discussed
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Molecular rotation in the presence of IV R 371

in the previous section. In this form of spectroscopy, the ® nal states are highly
mixed in the zeroth-order basis set that describes the low energy states as indicated
in equation (1.3). This state-mixing leads to the observation of several molecular

eigenstate transitions where one would expect a single-rovibrationa l transition based

on the selection rules of spectroscopy at low energy. This fragmentation of the

oscillator strength is the spectral manifestation of energy ¯ ow between the zeroth-

order normal-mode vibrational states (see ® gure 2).
The third type of spectroscopy involves transitions between two quantum states

above the IVR threshold. In this case, both states in the transition are highly

mixed with respect to the usual spectroscopic basis set. This third type of molecular

spectroscopy has received much less theoretical and experimental attention. The

problem in this area that has attracted the most interest involves the nature of
vibrational spectroscopy [43, 44, 45, 46, 47, 48]. This work has been performed in

the context of infrared multiphoton excitation (IRMPE). In the IRMPE literature,

the region of highly mixed quantum states is often called the quasi-continuum.

The importance of spectroscopy between highly mixed states for understanding the

IRMPE process has motivated a few experiments designed to investigate this third

type of spectroscopy [49, 50, 51, 52, 53, 54, 55, 56, 57]. These experiments are di� cult
owing to the inability to cleanly prepare states above the IVR threshold.

With the descriptions of the zeroth-order Hamiltonians for molecules with a

single and multiple stable geometric minima, we next proceed to discuss the spec-

troscopy of single quantum states in an energy region where there is extensive state-

mixing. Experimentally, we can access these highly mixed quantum states through
the hydride stretch fundamental s of medium-large polyatomic molecules. In this

sense, the quantum states would not be considered h̀ighly-excited’ and these two

concepts need to be kept separate. For example, the spectrum of a highly excited

small molecule can still show regular spectroscopic structure with no evidence of

state-mixing. Despite the high total energy of the molecule, the spectroscopy would
not display the eŒects we will discuss for highly mixed states [58, 59]. In particular,

we focus on rotational motion of the molecule in this regime. New features of

the spectroscopy arise from the presence of highly mixed wavefunctions that are

described by motional narrowing theory [60, 61, 62]. In the next section we provide a

basic description of the rotational motion of a molecule with a single, energetically

accessible structure. In the third section of this review, we extend this theory to
include the possibility that isomerization occurs.

2. Rotational spectroscopy and IVR dynamics

This section discusses the basic issues involved in the rotational motion of

molecules in energy regions where IVR occurs [60, 61]. The discussion is limited
to the case where the molecule has a single, energetically accessible conformation.

Also, the problem focuses on the rotational spectrum that is measured from a single
molecular eigenstate. There are two diŒerent ways that the IVR dynamics modify

the rotational spectrum of the molecule. First, the presence of state-mixing leads

to the appearance of statistical properties in the spectrum of a single molecular
eigenstate. This change in the spectrum is entirely described through the number of

states participating in the IVR dynamics and is, therefore, related to the extent of

IVR. A second change in the spectrum caused by IVR is observed in the overall

line shape of the rotational spectrum. This eŒect is described by the motional

narrowing theories originally developed for NMR spectroscopy [63, 64, 65, 66] and
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372 J. Keske et al.

depends on the rate of IVR. Through changes in the line shape of the rotational

spectrum, new information about the rate and mechanism of IVR can be obtained
that complements that of single-photon infrared studies.

2.1. Statistical properties of the molecular eigenstates
The description of the rotational spectrum is based on the choice of a zeroth-

order basis. The basis we choose is the s̀pectroscopic basis’. In this basis set the

quantum states are direct products of normal-mode vibrational states and distortable

rotor rotational states (equation (1.2)). Of particular importance for this problem,

each normal-mode vibrational state has its own set of rotational constants (e.g. A,

B, C and distortion constants). It is common to describe the vibrational dependence
of the rotational constants using a series approximation [14, 15]. To lowest order,

the rotational constant (B) of a vibrational state can be written as

Bv = Be

3N 6

i=1

a i vi +
1

2
= B0

3N 6

i=1

a ivi, (2.1)

where B0 is the rotational constant for the ground vibrational state and the constants
a i are called the vibration± rotation interaction constants. Similar expressions can

be written for the other rotational and distortion constants. Also, for highly excited

molecules it is likely that higher order terms in the expansion would be required,

however, there is little or no data in the literature that can assess the importance of

these terms.

The vibration± rotation interaction constants contain contributions from two dif-

ferent eŒects [14, 15]. From a physical point of view, the most important contribution

comes from the change in the moment of inertia averaged over the vibrational wave-
function. This vibrational contribution includes both a harmonic contribution (due

to changes in the root-mean-square d bond distances and angles) and an anharmonic

contribution (where the average bond length and angles are functions of the vibra-

tional states). This contribution, therefore, re¯ ects the physical changes in geometry

that accompany vibrational excitation. The second contribution to the vibration±
rotation interaction constant comes from non-resonant rovibrational interaction via

Coriolis coupling. Because the non-resonant interactions will persist at high energy,

they are included in the zeroth-order problem. The problem that we are dealing with

is how the extensive local, resonant perturbations in the spectrum that characterize

IVR (see ® gure 2) aŒect the rotational spectrum of a single molecular eigenstate.

With this de® nition of the vibration± rotation interaction constants, we can now

consider the properties of single molecular eigenstates of a molecule. As indicated

in ® gure 5, there are two energy regimes for the rotational spectroscopy of single
quantum states. At low energy, the spectroscopic basis set provides an excellent

description of the quantum states. In this regime, the rotational spectroscopy of

a single rotation± vibration eigenstate follows the usual description [1, 2]. Here,

a single rotational transition is observed in the frequency region characteristic

of the rotational motion. This frequency domain spectrum re¯ ects the fact that
the rotational motion of the molecule is completely regular and contains a single

frequency component. The frequency is determined by the moment of inertia of

the molecule averaged over the vibrational wavefunction. Because the vibrational

motion is much faster than the rotational period, the rotation can be characterized

by a single, vibrationally averaged structure. Note that in this energy regime the
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Molecular rotation in the presence of IV R 373

rotational motion is regular even if the wavefunction is widely spread, as might

occur for molecules with a large amplitude coordinate [67, 68].
More interesting is the second energy regime of ® gure 5 where IVR occurs. In this

case, the time scale for vibrational energy ¯ ow is comparable to the rotational periods

so that the molecule can sample diŒerent nuclear con® gurations during the rotational

motion. These eŒects are described by considering the spectroscopic properties of

the interacting zeroth-order rovibrational states. In this energy regime, there will
be several basis states interacting through anharmonicity (and Coriolis coupling)

in the molecular Hamiltonian. Due to the vibration± rotation interaction terms,

equation (2.1), each vibrational state has its own set of rotational constants. For some

smaller polyatomic molecules the vibration± rotation interaction terms are known

for all, or most, of the normal-mode vibrational states. From this information, and
assuming the lowest order expansion represented by equation (2.1), the distribution

of rotational constants for a local microcanonical ensemble can be calculated. For the

cases reported in the literature, the distribution can be approximated by the normal

distribution [19, 69, 70]. Therefore, the ensemble rotational constant properties of the

zeroth-order states can be characterized by the average rotational constant (Bavg )

and the standard deviation ( r (B)).
To understand the features of the rotational spectrum of a single quantum state

in the IVR regime we must examine the properties not of the zeroth-order ensemble

but of the individual molecular eigenstates. To illustrate the eigenstate rotational

properties, we employ random matrix model calculations [61]. The properties of

the random matrix Hamiltonian have been shown to provide a good description
of real spectra in the IVR regime [71, 72]. The model calculations presented below

assume that the distribution of rotational constants in the spectroscopic basis set

is described by the normal distribution. The statistical rotational properties of

the molecular eigenstates can be quanti ® ed in terms of the expectation value and

uncertainty of the rotational constant in each quantum state using the usual relations

B i =

j

c(i)
j

2B(0)
j , (2.2)

D Bi = ( B2
i B 2

i )
1/ 2

=

j

c(i)
j

2B(0)
j

2

j

c(i)
j

2B(0)
j

2 1/ 2

. (2.3)

In these expressions, the sums run over the j -zeroth-order contributions to the

molecular eigenstate (equation (1.3)) where each zeroth-order state has its own
rotational constant (B(0)

j ) given by equation (2.1).

We consider the statistical distribution of these two quantities in the molecu-
lar eigenstate ensemble. The evolution of the eigenstate properties as the coupling

between the basis states is increased is shown in ® gures 6 and 7. In these ® gures,

the extent of state-mixing is characterized by the quantities q W , where q is the
state density and W is the root-mean-square d interaction matrix element in the

Hamiltonian model, and the number of eŒective states involved in the state mixing.

The number of eŒective states mixed by the IVR dynamics is given by

NeŒ=
1

i c(i)
b

4
, (2.4)
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374 J. Keske et al.

Figure 6. Within the set of molecular eigenstates, there will be a distribution of the rota-
tional constant expectation value (equation (2.2)) and ¯ uctuation (2.3). The standard
deviations of these two eigenstate properties are shown as the extent of state-mixing
is increased, as measured by the number of eŒectively coupled states (equation (2.4)).

The distribution for both of these quantities narrows linearly with N
1/ 2

eŒ . This result
indicates that for extensive mixing, the statistical properties of all eigenstates are the
same.

where the sum runs over all molecular eigenstates and a single zeroth-order state is

chosen as the bright state.

These model calculations show how the statistical properties of the original

zeroth-order ensemble become imbedded in the character of each molecular eigen-
state. In the absence of IVR, where q W = 0 or NeŒ = 1, each eigenstate (i.e.

each zeroth-order state) has its own rotational constant. In this case, there is no

uncertainty in the rotational constant (equation (2.3)), however, there is a spread of

expectation values in the ensemble given by the standard deviation of the rotational

constant distribution, r (B). This initial condition can be gleaned from ® gures 6 and

7. Figure 8 shows the average value of the rotational constant uncertainty in the
eigenstate ensemble and initially it is zero. The distribution of average rotational

constants (equation (2.2)) is shown in ® gure 6 and is initially the standard deviation

of the original zeroth-order ensemble ( r (B) = 0.2 in the calculation).

As the interaction strength is increased, there are two changes in these quantities.
One change is that each eigenstate acquires a ¯ uctuation. This evolution is given

in ® gure 8 where it is found that this quantity very rapidly approaches the original

zeroth-order ensemble standard deviation ( r (B)). The full zeroth-order ensemble

limit is reached by the time q W = 1 [73, 74]. This relative interaction strength

corresponds to about 10 states participating in the state-mixing, as indicated by
the value of NeŒ. At the same time, the spread of average rotational constants

in the eigenstates, determined by the standard deviation of the eigenstate averages

( r ( B i)), gets smaller (® gure 6). The narrowing of this distribution is simply given by

r B i =
r (B)

N
1/ 2
eŒ

. (2.5)

As shown in ® gure 6, the spread of values for the rotational constant ¯ uctuation in
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Molecular rotation in the presence of IV R 375

Figure 7. A random matrix model calculation of the evolution of the bright-state vibrational
spectrum (negative spectrum) and the single eigenstate rotational spectrum (positive
spectrum) is shown as the coupling strength increases (the value of q W is given in each
panel). The vibrational spectrum is for the bright state with total angular momentum
J + 1. The D J = +1 rotational spectrum is calculated for the most intense vibrational
transition at total angular momentum J (and, therefore, terminates on eigenstates
with J + 1 like the vibrational spectra). For no coupling (upper left), the vibrational
and rotational spectra both consist of a single transition. As the coupling is increased,
the rotational spectrum shifts in frequency and broadens through fragmentation of
the spectrum. In the f̀ully mixed’ limit ( q W 1), the single eigenstate rotational
spectrum simply re¯ ects the initial distribution of rotational frequencies in the zeroth-
order basis. This distribution is shown by the solid Gaussian line shape pro® le.
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376 J. Keske et al.

Figure 8. The evolution of the eigenstate-average rotational constant ¯ uctuation (equa-
tion (2.3)) is shown as a function of the extent of state-mixing. The extent of state-
mixing can be judged from the number of eŒectively coupled states (equation (2.4))
shown by the open squares on the right hand axis. A rapid convergence of the eigen-
state rotational constant ¯ uctuation to the standard deviation of rotational constants
in the zeroth-order basis ( r (B) = 0.2) is observed. The f̀ully mixed’ limit is reached
when q W 1.

the molecular eigenstates also decreases as (NeŒ) 1/ 2. These model results indicate
that in the presence of extensive state-mixing, the rotational constant average and

¯ uctuations approach the same value for all eigenstates. Furthermore, the quantum

mechanical average and ¯ uctuation in a single eigenstate assume the original en-

semble average and standard deviation of the zeroth-order ensemble, respectively.

In this way, the properties of the microcanonical ensemble are impressed onto the

properties of each molecular eigenstate.

2.2. Calculation of the rotational spectrum of a single quantum state
The calculation of the spectrum of a single quantum state requires consideration

of two features of the spectroscopy: (1) the energy level structure at sequential values

of the total angular momentum (J), and (2) the vibrational dependence of the tran-

sition moment (which includes the dipole moment and the rotational H Èonl± London

factors [14, 15]). In this problem, we consider the D J = +1 rotational transition
for a single quantum state with a well-de® ned initial total angular momentum (J).

To simplify the discussion, it is assumed that the rotational spectrum of interest

behaves like the pure rotational spectrum of a linear molecule. For example, this ap-

proximation is valid for a near prolate asymmetric top where the eŒective rotational

constant (BeŒ) for the a-type spectrum is 1
2
(B + C).

To describe the spectroscopy of a single, highly mixed quantum state it is

convenient to work in the basis set where the initial state is an eigenfunction. In
this case, the basis set of choice is the set of molecular eigenstates of the full

Hamiltonian with total angular momentum quantum number, J. This approach is

general for describing the appearance of a spectrum in regions where dynamics

occur. For example, for the standard model of IVR shown in ® gure 1, the problem is

described in terms of the basis set where the initial state (e.g. the ground vibrational
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Molecular rotation in the presence of IV R 377

state) is an eigenstate (i.e. the eigenstates of H0). For the rotational spectroscopy of

a single, highly mixed state we have called the basis set the èigenstate-at-J ’ basis.
The exact nature of the zeroth-order state-mixing in this basis set is determined by

the relative energies of the zeroth-order states and the interaction matrix elements

between them. One important feature of this problem is that the relative energies

of the zeroth-order states at the next higher value of the total angular momentum

(J + 1) diŒer from the ordering at J . The variation in the ordering is caused by the
vibrational dependence of the rotational constants. At the higher value of the total

angular momentum, the energy of the ith zeroth-order basis state is given by

E (0)
i (J + 1) = E(0)

i (J) + 2Bi(J + 1) = E(0)
i (J) + 2Bavg(J + 1) + 2D Bi(J + 1), (2.6)

where E(0)
i (J) is its energy at the lower value of angular momentum, Bavg is the local

zeroth-order ensemble average rotational constant (and will, in general, diŒer from

the rotational constant in the ground vibrational state) and D Bi is the deviation of

the rotational constant of the ith zeroth-order state from the local ensemble average.

Using this notation, the molecular Hamiltonian at (J + 1) can be written with

respect to the zeroth-order basis in the form

H(J + 1) = H(J) + 2Bavg(J + 1)I + 2 D Bi(J + 1), (2.7)

where each term is a matrix. In this expression, I is the identity matrix and D Bi

is a diagonal matrix. The ® rst term, H(J) includes the interaction matrix elements
between the zeroth-order basis states: H(J) = H0(J) + W . Also, we assume that the

interactions (W ) are independent of the total angular momentum (i.e. they represent

purely anharmonic interactions). To convert to the èigenstate-at-J ’ basis, a similar

transformation is applied that diagonalizes the H(J) part of the full Hamiltonian

in equation (2.7). This transformation leads to a new Hamiltonian problem that is
formally similar to the basic IVR model of equation (1.1),

H(J + 1)eigenstate = H(J)eigenstate + 2Bavg(J + 1)I + 2(J + 1)[CT D BiC], (2.8)

where H(J)eigenstate is given by CTH(J)C and is diagonal (C is the eigenvector
matrix for the molecular eigenstates with respect to the zeroth-order basis set).

The ® rst term in equation (2.8) simply shifts the energies of the eigenstates by the

ensemble average rotational frequency. However, in transforming the second term,

new oŒ-diagonal interactions are introduced. Therefore, it is found that our chosen

quantum state at total angular momentum J is no longer an eigenstate at (J + 1).
Therefore, the rotational spectrum of the single eigenstate is expected to show the

same fragmentation eŒects that are found in the standard IVR problem. However,

in this case the interaction terms that cause fragmentation of the spectrum originate

in the vibration± rotation interaction constants (through the oŒ-diagonal elements

of [CT D BiC]).

To complete the description of the spectroscopy, it is also necessary to evaluate
the transition moment in the èigenstate-at-J ’ basis. In the original zeroth-order basis,

the transition moment will also have a vibrational dependence. The transformation

to the èigenstate-at-J ’ basis can be handled in the same way as for the vibrational

dependence of the rotational constants. In the èigenstate-at-J ’ basis the transition

moment operator is

l eigenstate = l avgI + CT D l iC, (2.9)

where the same similarity transformation is used that diagonalizes the full Hamil-
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378 J. Keske et al.

tonian at total angular momentum J . The result of this conversion is that there is a

dominant d̀iagonal ’ transition moment term in the eigenstate basis given by

u i l u i = l avg + [CT D l iC] ii. (2.10)

This term can be identi® ed as the d̀ipole moment’ of the ith eigenstate since

the vibrational wavefunctions in the matrix element are identical. However, when

considering the spectrum from a single initial eigenstate, there are now oŒ-diagonal
matrix elements given by

u j l u i = [CT D l iC] ij . (2.11)

In this term, the eigenstate vibrational wavefunction is diŒerent in the initial and

® nal states and this term can, therefore, be equated with a v̀ibrational’ transition
dipole moment at the eigenstate level. In the limit of strong state-mixing these

v̀ibrational’ contributions to the spectrum are expected to be small due to dilution

of the D l term over a large number of eigenstates. Simulations of the changes in the

rotational spectrum when a distribution of zeroth-order dipole moments is included

supports this conclusion (see ® gure 8 of [61]).

The general conclusion of this description of the spectroscopy is that we can

de® ne a p̀ure rotational ’ spectrum for a single eigenstate that has a transition

moment given by equation (2.10). However, the important feature of the spectrum

is that the stationary vibrational motions at total angular momentum J (i.e. the
vibrational motion associated with a single eigenstate) are no longer stationary

at the next value of the total angular momentum (J + 1). At this higher angular

momentum level, there will be vibrational energy redistribution driven entirely by

the vibration± rotation interaction terms leading to r̀otationally induced IVR’. As a

result, the rotational spectrum of the j th single eigenstate will consist of a series of
transitions centred at the rotational frequency given by

m (j )
centre = 2(J + 1)(Bavg + [CT D BiC] j j ). (2.12)

Again, in the limit of extensive state-mixing we expect that this centre frequency

will be the same for all eigenstates as indicated by ® gure 6. Physically, at a given
energy we expect the average geometry of the molecule to be slightly modi® ed

from the geometry in the ground vibrational state. The centre frequency of the

rotational spectrum and the p̀ure rotational ’ transition moment re¯ ect this new

average geometry of the molecule.

The important problem remains to characterize the line shape of the rotational

spectrum of a single quantum state. For these spectra, the line shape is de® ned

as the overall intensity pro® le of the spectrum. The eigenstate-resolved spectrum

will consist of a set of transitions underneath this line shape pro® le in a manner

analogous to the appearance of the high-resolution infrared spectrum in the presence

of IVR (® gures 1 and 2). The key feature of the spectroscopy is that this line shape
pro® le is a function of the IVR rate between the zeroth-order vibrational states. In

terms of the discussion presented above, this can be attributed to the fact that the

transformation matrix, C, is a function of the strength of the root-mean-square d

vibrational interaction matrix elements. Therefore, the structure of the vibration±

rotation p̀erturbation’ matrix, [CT D BiC], for the eigenstate rotational problem is
also modi® ed by the IVR process.

A model calculation of the rotational spectrum of a single eigenstate as a

function of the interaction matrix element is shown in ® gure 7 [61]. In the absence
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Molecular rotation in the presence of IV R 379

of these interactions, the rotational spectrum is simply the p̀ure rotational’ spectrum

of a single vibrationally excited state. It consists of a single transition at the
frequency determined by the rotational constant of the zeroth-order state. This

type of spectrum would be observed in an infrared-microwave double-resonance

spectroscopy measurement at low energy where the vibrational state is unperturbed.

Also shown in this ® gure is the vibrational spectrum calculated for this energy

region. In this model calculation, we determine the rotational spectrum of the
strongest transition in the rovibrational spectrum. In this simple case of no mixing,

the chosen state is simply the zeroth-order bright state. In the rovibrational spectrum

of the unperturbed bright state we would observe a single transition to the (J + 1)-

level of the excited state. Furthermore, the quantum state we observe in the rotational

spectrum (J J + 1) would be the same one found in the rovibrational spectrum.

As the extent of IVR increases, measured by the eŒective number of coupled

states, the spectrum undergoes substantial modi® cation. The rotational spectrum of a

single eigenstate evolves in two ways. First of all, the centre position of the spectrum
shifts towards the frequency given by the eigenstate average rotational constant

(equation (2.12)). Also, there is a broadening of the spectrum. The overall line shape

pro® le becomes Gaussian in the model calculation. This line shape is completely

determined by the distribution of rotational constants in the zeroth-order basis set.

By the time f̀ull mixing’ is encountered (q W 1 as indicated in ® gure 8), the line
shape pro® le of the single quantum state spectrum simply re¯ ects the original zeroth-

order rotational constant distribution. The centre position and width of the spectrum

are determined by the average value and ¯ uctuation of the rotational constant in the

eigenstate (equations (2.2) and (2.3)). Also, the line shape of the rotational spectrum

of the single quantum state is qualitatively diŒerent from the line shape of the

vibrational spectrum. This behaviour simply re¯ ects the fact that the two forms of
spectroscopy are sensitive to two diŒerent types of dynamics: decay of the vibrational

survival probability due to IVR and the rotational motion of the molecule.

Upon further increase of the IVR rate, there is a second characteristic change in

the line shape pro® le. This evolution is shown in ® gure 9, which is a continuation

of the calculation in ® gure 7. With increasing IVR rate, the width of the spectrum

narrows and line shape approaches a Lorentzian form (near line centre). This eŒect

is the well-known motional or exchange narrowing phenomenon ® rst encountered in

NMR spectroscopy [63, 64, 65, 66]. In this case, IVR is the cause for this narrowing
and we have called this eŒect ÌVR exchange narrowing’. In the limit of strong

narrowing [63, 64, 65, 66], the line width of the spectrum is given approximately by

D m obs = rot
rot

IVR
= 2(J + 1) r (B)

2(J + 1) r (B)

2p W 2 q
, (2.13)

where rot is the dephasing rate caused by the spread in zeroth-order rotational

frequencies and IVR is the IVR rate in the model calculation (given by the Fermi

Golden Rule expression). The Lorentzian line shape with this width is shown in
® gure 9 along with the original Gaussian distribution of rotational frequencies from

the zeroth-order states.

The physical origin of this narrowing eŒect is described by the following argu-

ment. The vibrational interaction matrix elements that lead to IVR can be interpreted

as the rate of exchange between the zeroth-order states. When this rate of exchange

is slow, we can imagine that the molecule samples each normal-mode rotational

frequency on a time scale slow compared to the rotation. This sampling leads to

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



380 J. Keske et al.

Figure 9. In this ® gure, the vibrational coupling strength is further increased from the
® nal values of ® gure 7. As the coupling strength increases, the IVR rate exceeds the
dephasing rate determined by the spread of rotational frequencies in the zeroth-order
basis (see equation (2.13)). This leads to IVR exchange narrowing of the spectrum.
The zeroth-order frequency distribution is described by the Gaussian line shape pro® le
in each panel. The extent of narrowing is given by the width ratio which is the ratio
of the IVR rate to the rotational dephasing rate. The overall line shape pro® le of the
rotational spectrum is well described by a Lorentzian curve with a width given by
equation (2.13) as shown in each panel.
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Molecular rotation in the presence of IV R 381

a ẁobbly’ rotational motion and the spectrum evolves to the Gaussian pro® le de-

termined by the zeroth-order frequency distribution. However, as the sampling (i.e.
IVR) rate increases, the molecule rapidly moves between the frequencies of this

distribution. For very fast ÌVR exchange’ the rotational motion can only pick up

the àverage’ geometry of the molecule and the rotational motion becomes s̀mooth’

again at this average frequency. The more regular rotational motion produces a

frequency spectrum with a narrower width.
These basic features of the rotational spectroscopy of a molecule in the presence

of IVR have been experimentally demonstrated in our measurements on propargyl

alcohol [75, 76]. One interesting feature of this measurement is that we can determine

the IVR rate by two separate measurements: through the vibrational bright-state

spectrum [75] and through the single eigenstate rotational spectrum [76]. We observe
diŒerent IVR rates, and diŒerent dependence of these rates on the angular momen-

tum quantum numbers, through the various techniques. This discrepancy points out

a fundamental diŒerence between the two approaches. The vibrational measurement

provides a mode-speci® c IVR rate for a single zeroth-order state (the infrared active

bright state). However, in the rotational measurement we start from a molecular

eigenstate with a `microcanonically averaged’ vibrational motion. The rotational
measurement provides information about the àverage’ vibrational dynamics in the

energy range and is, therefore, complementary to the vibrational measurement. Stud-

ies of this type provide a unique opportunity to determine whether the mode-speci® c

dynamics of the bright state are re¯ ective of the average dynamics occurring in the

same energy range.
Finally, we mention some limitations of the current model. Most importantly,

we have assumed that the interaction matrix elements between the zeroth-order

vibrational states are independent of the total angular momentum (J). However,

high-resolution infrared spectroscopy studies of IVR indicate that Coriolis inter-

actions are a common feature of the vibrational state-mixing [21, 23, 72]. For
p̀erpendicular’ Coriolis coupling the matrix elements are J-dependent [14, 15]. This

eŒect leads to a third term in equation (2.7) that will also drive vibrational energy re-

distribution in the rotational spectroscopy and add an additional lifetime broadening

to the spectrum. Quantitative analysis of these eŒects is currently under investiga-

tion in our laboratory. A second omission in this formulation is oŒ-diagonal (in the

zeroth-order vibrational basis) vibration± rotation interactions [15]. For molecules
with a single stable conformation these terms are expected to be small. However,

they may make sizable contributions to cases where isomerization can occur in

the energy region being studied [77, 78, 79]. The role these terms play in isomer-

ization processes in energy regions where there is extensive IVR requires further

investigation. Empirically, we have not observed the strong rotational-dependence
of isomerization rates that would accompany these interactions suggesting they are

also weak in the case of large-scale nuclear rearrangement.

3. Conformational isomerization and rotational spectroscopy

In this section, the discussion of the rotational spectrum of a highly mixed
quantum state is extended to the case where a molecule can isomerize [62]. In

particular, we focus on isomerization about single bonds, a process often called

conformational isomerization. Rotational spectroscopy has long played an important

role in the understanding of conformational isomerization [80, 81, 82, 83, 84, 85].

Some of the ® rst measurements to demonstrate the presence of distinct molecular
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geometries were performed using the standard techniques of microwave spectroscopy

[2, 80, 81, 82, 83, 84, 85]. Measurements of the rotational spectra of torsionally
excited states has been used to determine the shape of the torsional potential for

isomerization [2] (although measurements of the transition frequencies between

torsional excited states in the far infrared spectral region have provided a more

direct method [86, 87]). The extension of rotational spectroscopy measurements

to highly mixed quantum states with energies above the barrier to isomerization
permits the determination of the microcanonical isomerization rate and opens a

new vista for this traditional technique.

3.1. Zeroth-order description of the interacting states
The starting point for understanding the rotational spectroscopy of isomeriz-

ing systems is the zeroth-order picture of the quantum states shown in ® gure 4.

In the absence of vibrational state-mixing, the quantum states of the molecule

can be approximated as direct products of a small-amplitude wavefunction for

the normal-mode motion, a torsional wavefunction obtained from solution of the

time-independent Schr Èodinger equation using the isomerization potential, and an

asymmetric top rotational wavefunction. For the case of a single torsional coordi-
nate, the solutions to the Schr Èodinger equation can be obtained through the usual

matrix methods [88].

When the wavefunctions for the torsional Hamiltonian are examined, they can

be grouped into two distinct classes [9, 89, 90]. For solutions below the barrier

to isomerization, the probability distribution tends to be localized in the distinct
wells associated with each conformer. For these quantum states we can assign

the conformational structure. Above the barrier to isomerization, the probability

distribution tends to be delocalized over the full range of torsional angles. We

call these zeroth-order quantum states s̀tructurally delocalized’. It is, in general, no

longer possible to associate a well-de® ned geometry with these quantum states. For
energies well above the barrier to isomerization, these wavefunctions correspond to

nearly free-rotor motion in the torsional coordinate.

The model used in ® gure 4 is essentially the same as the state description

typically used to describe unimolecular reactions [5, 6]. In the standard approach, it

is convenient to describe above-barrie r quantum states as vibrational states of the

transition state. For isomerization reactions where there is a well-de® ned barrier, the
transition state corresponds to the molecular structure at the top of the barrier. In

the derivation of the microcanonical rate constant in RRKM theory it is common to

introduce the motion in the reaction coordinate of the transition state as a particle-

in-a-box problem (the size of the box ends up dropping out of this calculation) [5].

This motion corresponds to the ìsomerization’ event.
The remnants of this construct can be seen in the torsional wavefunctions. The

probability distributions for the ® rst two wavefunctions above the two barriers to

isomerization in 4-chlorobut-1-yn e are shown in ® gure 10. When the total energy of

the quantum state is only slightly above the barrier to isomerization, the torsional

wavefunction has a probability b̀uild-up’ at the transition state geometry. Physically,
in the region of the barrier the torsional kinetic energy is very low so that, on average,

this is the most likely region to ® nd the system. In a physical sense, spectroscopy

of this zeroth-order quantum state would be s̀pectroscopy of the transition state’.

Since these zeroth-order states will contribute to the highly mixed quantum states as

discussed below, we are able to use rotational spectroscopy to s̀ee the transition state’.
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Molecular rotation in the presence of IV R 383

Figure 10. The probability distributions for the ® rst two torsional wavefunctions above the
isomerization barriers of 4-chlorobut-1-yne are shown. For energies just above the
barrier, the probability distribution is peaked at the transition state structure. The
nodal patterns in the region of the transition state are simple (especially for the
higher isomerization barrier) and are reminiscent of the particle-in-a-box construct
often used to derive the RRKM theory result for the microcanonical rate constant.

When the barrier to reaction is much higher than the typical vibrational fre-

quencies of the molecule, the model described by ® gure 3 looks more like tradi-

tional models for unimolecular reactions as shown in ® gure 11. The basic physical

principles in our model are the same as those used for the statistically adiabatic
channel model [91, 92, 93, 94, 95]. Furthermore, if the isomerization barrier is

very high, there will be many wavefunctions for the motion in the reaction co-

ordinate that exhibit the p̀robability build-up’ at the transition state structure.

By contrast, only a few of the above-barrier quantum states for low barrier iso-

merization actually show signi® cant localization at the transition state geometry.
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384 J. Keske et al.

Figure 11. For conformational isomerization reactions, the barrier to reaction is on the
same order as the normal-mode vibrational frequencies. In this case, we use the
model depicted in ® gure 3 to describe the spectroscopy and dynamics. If the barrier
to reaction is much higher than the vibrational frequencies, the model of ® gure 3
would appear as shown in this ® gure where there is an adiabatic torsional potential
shown for each vibrational level of one of the normal-modes. This picture resembles
the usual descriptions used in RRKM theory and the statistically adiabatic channel
method.

This behaviour occurs because the above-barrier energy spectrum for the quan-

tized torsional motion has energy level spacings that are appreciable to barrier

height. The torsional wavefunctions rapidly approach the s̀mooth’ probability pro-

® les expected of a free-rotor solution. In the case of low-barrier conformational
isomerization reactions, it is unclear that introducing the t̀ransition state’ is a useful

concept.

3.2. Spectroscopic properties of the zeroth-order states
To describe the rotational spectrum of molecules undergoing isomerization it is

necessary to know the physical properties of the zeroth-order basis states that aŒect

rotational motion. There are two properties that are required: (1) to calculate the

frequencies of transitions we need the rotational constants for each basis state and (2)

to calculate the transition intensities we need the dipole moment for each basis state.

For the case where a molecule can isomerize, the values of the rotational constants
and dipole moments will be characteristic of the conformational geometry. This

idea forms the basis of using pure rotational spectroscopy to study conformational

geometry [2]. The structure of the molecule is, in turn, related to the torsional

wavefunction probability distribution for the zeroth-order state. Because the torsional

motion can involve the large amplitude motion of a heavy atom, we assume that
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Molecular rotation in the presence of IV R 385

the important properties of the zeroth-order states are dominated by the torsional

wavefunction. In our study of the rotational spectrum of propargyl alcohol, where
there is no large amplitude motion of a heavy atom, we have observed very small

changes in the rotational constants (0.4% change) supporting this assumption [76].

In our work, we estimate the rotational constants through the expectation value

of the rotational constant over the torsional wavefunction [67, 68, 96]. We obtain

the torsional dependence of the rotational constant through a series of single point
energy minimizations using standard ab initio methods. In a similar manner, we

determine the dipole moment for each torsional state. We have tested this method for

molecules where the rotational constants of thermally populated excited torsional

states have been reported and get good agreement, in general [89, 90, 87]. This

approach neglects the Coriolis contribution to the rotational constant, which may
be substantial for closely spaced torsional levels. The addition of these contributions

will be a later re® nement to our analysis.

From the rotational constants for each torsional state it is possible to predict the

changes in rotational frequency associated with torsional excitation. An example of

this type of calculation is shown in ® gure 12. We ® nd the same general features in

all systems [9, 90]. There are three characteristic sets of frequencies for the torsional
states. The highest and lowest frequencies come from torsional states localized in

the diŒerent stable conformer wells. As the energy of the torsional state exceeds

the barrier to isomerization there is a rapid transition to an intermediate frequency.

As described above, this region can be roughly thought of as the characteristic

rotational frequency of the transition state. The rapid transition between the diŒerent
characteristic frequencies makes rotational spectroscopy particularly well suited for

measuring isomerization rates.

3.3. Statistical properties of the highly-mixed quantum states
To introduce dynamics into the problem we must include the interaction terms

in the Hamiltonian that couple the zeroth-order basis states. A major goal of our

work is to understand the physical origin of these terms so that we can uncover the

mechanism for isomerization. This development will require an extensive interplay

between theory and experiment and is still in its infancy in our group. In this

description of the spectroscopy, we just introduce these interactions empirically.

Through some of our studies we have evidence that the dominant interactions
occur between the delocalized and the localized states with little evidence for direct

interactions between torsional states localized around diŒerent geometries [9, 90].

In other words, interactions that lead to òver-the-barrier ’ motion are preferred over

t̀unnelling’ interactions. In any case, if isomerization occurs an eŒective interaction

is implied between zeroth-order states whose torsional wavefunctions are localized in
the diŒerent conformational minima of the potential. As a result, a single eigenstate

of the full Hamiltonian can be represented as a combination of zeroth-order states

with torsional wavefunctions that are both localized (around both structures! ) and

delocalized (over-the-barrie r states).

It is possible to proceed with the discussion along the lines of the previous
section. In that case, the rotational spectrum for molecules with a single stable

geometry could be described in terms of the quantum mechanical average and

uncertainty of the rotational constant (with the `motional’ eŒects of IVR added

later). However, for this problem the above approach, which is still valid, obscures

the basic features of the spectrum. In this case, it is preferable to treat the three
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386 J. Keske et al.

Figure 12. The rotational frequencies for the diŒerent torsional states of 4-chlorobut-1-yne
are predicted. The rotational constant for each torsional state is estimated through the
average of the rotational constant over the torsional wavefunction. The predictions
for the J = 4 J = 3 transition frequencies are shown on the left. Because the
molecule is an asymmetric top, we have indicated the upper ( 413 ± 312) and lower (
414 ± 313) ranges for the rotational frequency. The centre values are for the predicted
404 ± 303 asymmetric top rotational transition. The lower frequencies (near 12 GHz) are
for the trans conformer, which is much closer to the prolate symmetric top limit than
the gauche conformer (upper frequencies near 16 GHz, larger asymmetry spread). The
vertical dotted line indicates the barrier to trans–gauche isomerization. Above the
barrier, a third characteristic type of rotational frequency (with a sizable vibration±
rotation interaction term as indicated by the slope) emerges. These frequencies can be
identi® ed with the transition state geometry. On the right, the J = 4 J = 5 predicted
transition frequencies are shown. Only rotational frequencies of the trans conformer
(near 14.5 GHz) are expected to fall in our experimental range (10± 17.5 GHz). Notice
that the J = 4 J = 5 trans frequencies are expected to occur near the J = 4 J = 3
gauche transitions. This behaviour makes it necessary to be able to experimentally
determine the sign of the transition frequency.

distinct contributions to the structurally mixed eigenstates separately [62]. In this

way, we can introduce a p̀artial probability’ for each type of zeroth-order state:

states with torsional wavefunctions localized around the more stable conformation

(labelled I), states localized around the less stable conformation (labelled III) and
states with delocalized wavefunctions (labelled II). In this basis set a single molecular

eigenstate can be written as

u j =

N TypeI

p=1

c(j )
p  I

p +

N TypeII

q=1

c(j )
q  II

q +

N TypeIII

r=1

c(j )
r  III

r . (3.1)
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Molecular rotation in the presence of IV R 387

For the j th structurally mixed eigenstate, the probabilities of ® nding the molecule

in zeroth-order states associated with the three diŒerent torsional properties are
de® ned as

Prob Ij =

N TypeI

p=1

c(j )
p

2
, (3.2)

Prob IIj =

N TypeII

q=1

c(j )
q

2
, (3.3)

Prob IIIj =

N TypeIII

r=1

c(j )
r

2
. (3.4)

In each of these equations, the sum runs over the number of zeroth-order basis
states of each individual type. By completeness, the total probability is one. In the

case of c̀omplete mixing’ these three probabilities will be the same for all molecular

eigenstates and will simply be the fraction of states of each type at the energy of

interest. This relationship can be expressed in terms of the state-densities for the

zeroth-order states as

Prob I
q TypeI

q TypeI + q TypeII + q TypeIII

=
q TypeI

q total

(3.5)

with similar expressions for the other two types of zeroth-order quantum states.
In terms of a standard chemistry interpretation, these probabilities are simply

the microcanonical c̀oncentrations’ of the three types of states. Because we are

considering the properties at a ® xed total energy of the molecule, these relative

concentrations depend both on the relative stability of the conformers ( D H-like

term) and the vibrational frequencies of the two conformers ( D S-like term). The

ratio of the populations is simply related to the microcanonical equilibrium constant
at the energy ( D G-like term).

However, there is an important distinction between the quantum view of the

isomerization reaction and the simple chemistry view. In a classical view of this

chemical reaction, we would think of an ensemble of molecules where there is
a mixture of molecules with diŒerent structures, say the reactant, product and

(with a ¯ eeting existence) the transition state. (Note that this is the same view

given by the zeroth-order basis.) However, in reality the ensemble consists of a

set of molecules where each individual molecule is product, reactant and transition

state simultaneously. (This view is the molecular eigenstate picture.) In terms of
the torsional wavefunction for an eigenstate of the full Hamiltonian, there will be

probability of ® nding the system in all of the diŒerent conformational geometries.

An example of a structurally mixed eigenstate is depicted in ® gure 13 from model

calculations of the isomerization dynamics of 4-chlorobut-1-yne .

3.4. The rotational spectrum of a structurally mixed quantum state
At the simplest level, the rotational spectrum for a structurally mixed quantum

state is expected to show rotational transitions at the diŒerent characteristic frequen-

cies of the molecule: the frequencies associated with states localized around each

stable conformer geometry and with the frequency characteristic of the delocalized
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388 J. Keske et al.

Figure 13. This ® gure depicts a s̀tructurally mixed’ eigenstate of 4-chlorobut-1-yne near
3330 cm 1. The wavefunction was calculated through a random matrix calculation
that models the observed isomerization rate (see section 4). The probability distribution
of this single eigenstate contains contributions from both the trans (more stable) and
gauche (less stable) conformations.

torsional states (see ® gure 14). In other words, each part of the wavefunction is

expected to project out its characteristic spectrum. In this way, we can obtain struc-

tural information about the diŒerent stable conformations, as well as the transition

state in favourable cases, from the spectrum of a single quantum state. However, as

in the case for molecules with a single stable geometry, the dynamics of the system
play an important role in determining the overall line shape pro® le of the single

eigenstate rotational spectrum.

For the rotational spectrum of a molecule undergoing isomerization there are

two diŒerent types of dynamics that need to be considered. First of all, there
are interactions that lead to vibrational energy ¯ ow between states of the same

geometry. The eŒects of these dynamics have been presented in the previous section.

Secondly, there are interactions between states of diŒerent torsional character. Based

on previous experimental evidence, we assume that interactions occur between states

of each conformer and the delocalized torsional states (direct interactions between
torsional states localized around diŒerent stable geometries are assumed to be much

weaker). By analogy with the standard NMR notation, the ® rst type of interactions

lead to dynamics on a time scale that will be denoted T2. These dynamics maintain

conformational structure and, therefore, do not contribute to the lifetime of the

isomer. The second type of interactions lead to a dynamical time scale that will be

denoted T1 [3, 97]. In this case, the interactions lead to the decay of probability for
the stable geometry and, therefore, determine the lifetime of the conformer.

The actual values of T1 and T2 for each conformer can be obtained from the

Hamiltonian. In the case where there are three characteristic types of torsional states
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Molecular rotation in the presence of IV R 389

Figure 14. Model calculations of the single eigenstate rotational spectrum for a molecule
undergoing isomerization are shown as T1 is decreased (equation (3.7)). In this model,
there are equal densities of three diŒerent types of torsional states (e.g. the trans,
gauche and delocalized states of ® gure 3). Each characteristic torsional state has a
separate average rotational frequency (see ® gure 12). For slow isomerization, upper
left, the rotational spectrum of a single eigenstate shows all three characteristic
frequencies. As the isomerization rate increases, the overall line shape pro® le of the
spectrum undergoes coalescence. Eventually, for very fast isomerization, a single peak
is observed at the average rotational frequency of the coupled states (bottom right
panel). The solid line that describes the line shape pro® le is calculated from the Bloch
model modi® ed for exchange that is commonly used to interpret NMR coalescence
spectra.

[98], the Hamiltonian can be written in the following block form

H =

HI WI II 0

WI II HII WII III

0 WII III HIII

. (3.6)

Each entry in this Hamiltonian is itself a matrix. For example, the entry HI includes

all zeroth-order states of structure I and the interactions between these states (i.e.

it has the form of equation (1.1)). The two interaction blocks (W ) describe the
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390 J. Keske et al.

coupling between the states localized around the two stable conformations (I and

III) with the states that have above-barrier torsional wavefunctions (II).

To illustrate the basic properties of the rotational spectroscopy of a single

eigenstate of the Hamiltonian given in equation (3.5), we use a random matrix
model. In this model calculation, it is assumed that the densities of the three types

of states are equal. Additionally, we assume that the two interaction blocks are

identical. In this case, we can de® ne the T1 and T2 times using a Fermi Golden Rule

rate expression

T1 =
1

2 p I II

=
1

2 p II III

=
1

2 p 2 p W 2
I II q

, (3.7)

T2 =
1

2 p I I
=

1

2 p II II
=

1

2 p III III
=

1

2 p 2 p W 2 q
, (3.8)

where W 2 is the root-mean-square d interaction matrix element between states of

the same structure (assumed identical for all three types of states) and q is the

density of states for each structure.

The eŒects of the coupling between states of the same conformer are similar

to those described above. As the interaction matrix elements between states of a

given conformation increase (T2 decreases), there is a narrowing of the characteristic
spectrum for that conformation. For the conformational isomerization problem

there can be signi® cant ìnhomogeneous’ broadening of the conformer spectrum

that comes from the contributions of highly excited torsional states. For example,

the rotational frequencies for the gauche conformer of chlorobutyne show a wide

dispersion in ® gure 14. Additionally, through interactions that mix the value of the
Ka rotational quantum number, there will be an additional width contribution from

the molecular asymmetry. Fast IVR within a conformational structure can serve

to reduce these inhomogeneous eŒects in the spectrum through the IVR exchange

mechanism.

The variation in the single eigenstate rotational spectrum as a function of the T1,

with ® xed T2, is shown in ® gure 14. The overall line shape pro® le for the spectrum

(solid line) is calculated from the Bloch model modi® ed for chemical exchange using

the T1 and T2 values given in equations (3.7) and (3.8) [97]. For slow isomerization
the spectrum shows the s̀imple’ appearance expected for the structurally mixed

quantum state. From a single quantum state we can obtain the spectrum of each

conformer and the delocalized states. As the isomerization rate is increased, by

increasing the interaction matrix elements between the stable conformers and the

delocalized states, the line shape undergoes coalescence [99, 100, 101]. At ® rst, there
is simply a broadening in each of the three characteristic frequency regions. In

accord with the NMR nomenclature, this broadening simply re¯ ects the shortening

of the lifetime of the geometry (T1). In this regime, the isomerization rate can

be estimated from the line width of the spectrum. However, this provides only an

upper limit to the rate because there is also the T2 line width contribution to the
spectrum. This limitation is common to frequency-domain methods for determining

dynamics. As the interaction strength is further increased, the maxima of the spectra

shift towards the average frequency. For su� ciently fast isomerization (short T1),

the rotational spectrum appears as a single peak at the average frequency position.

Further increases of the rate will lead to additional narrowing of this spectral feature.
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Molecular rotation in the presence of IV R 391

This evolution of the line shape can be understood on classical grounds. Consider

the general physics example of an ice skater executing a spin with arms either
extended or close to the body. Because the total angular momentum of the skater

is conserved, there will be two characteristic rotational frequencies for the spinning

motion. Now, let the skater start ìsomerizing’ by alternating their arm position. If

this alternation is su� ciently slow, we can perceive the two separate frequencies.

However, if the alternation is rapid, a single, average frequency will begin to emerge.
Even faster alternation, compared to the time scale of the rotation, will lead to a

s̀mooth’ rotational motion composed of a narrow range of frequencies. This classical

picture provides a good description of the physics of coalescence and narrowing of

the rotational spectrum of an isomerizing molecule.

For the case where we can observe all three characteristic spectra, the isomeriza-

tion is su� ciently slow that the geometry is maintained long enough to de® ne each

frequency. In particular, we can interpret the intermediate frequency as the rotational
motion as the molecule passes over the barrier, i.e. while it has the transition state

structure. If the barrier passage is slow, the molecule has time to rotate as it converts

between the two stable geometries and this frequency is well-de® ned in the spectrum.

When the isomerization is too fast to permit rotation in each characteristic geometry,

we loose the ability to de® ne precise frequencies for each shape. The time scale that

de® nes this break point is related to the di erences between the characteristic fre-
quencies. This fact oŒers a convenient method for r̀esolving’ the frequencies for each

geometry. Because the rotational frequency diŒerences scale linearly with the total

angular momentum, this b̀reak point’ can be varied by studying diŒerent rotational

transitions. For example, if the spectrum has entered the coalescence regime at low

J , the three frequencies can be resolved by measuring a higher rotational transition.
This idea is illustrated in ® gure 15 [98]. The ability to change the characteristic time

scale for coalescence is a feature that does not exist for NMR spectroscopy where

the chemical shifts of the two species are not easily varied.

In summary, the isomerization kinetics of the molecule at a well-de® ned energy

can be obtained from the line shape of the rotational spectrum of a single quantum

state. In this way, the microcanonical rate constant (k(E,J)) can be measured directly

[5, 6]. The required spectroscopic parameters for simulating the line shape can be

obtained from the torsional eigenfunctions and ab initio calculations. In section 4 of
this review, this approach will be illustrated for the case of 4-chlorobut-1-yne .

3.5. T ime-domain interpretation of the spectroscopy
Finally, we discuss the connection between the observed spectrum and the

isomerization kinetics. In particular, we would like to tie together the Hamiltonian

dynamics, the classical kinetics approach of chemistry and the spectroscopy of a

structurally mixed quantum state. For simplicity, we now restrict ourselves to a

problem with only two characteristic geometries (now labelled I and II) and we omit

consideration of the above-barrier wavefunctions. As a starting point, consider the
standard kinetics approach to describing the isomerization reaction between these

two conformers

I
k1

k 1

II. (3.9)

A common method for measuring fast chemical kinetics uses relaxation tech-

niques [102]. In these methods, the reaction is initially at equilibrium. A perturbation
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392 J. Keske et al.

Figure 15. The coalescence phenomenon (see ® gure 14) occurs when the isomerization rate
(T 1

1 ) exceeds separation of the characteristic rotational frequencies. For rotational
spectroscopy, the frequency separation scales linearly with the total angular momen-
tum, J. Therefore, for a ® xed isomerization rate, the spectrum can be brought out of
coalescence by measuring the rotational spectrum at larger values of J. This eŒect is
illustrated by showing the calculated J-dependent line shape pro® les (from the Bloch
model, see ® gure 14) for a ® xed rate isomerization process. Physically, the molecule
must rotate a few cycles with a given structure for that frequency to be de® ned in the
spectrum. At a ® xed rate of barrier passage (i.e. isomerization), we can sample the
transition state structure by going to a rotational energy where the characteristic time
scale for rotation is faster than the time for passing over the barrier. The s̀preading’
of the spectrum permits resolution of the rotational frequencies associated with the
transition state geometry which are initially obscured by coalescence.

is rapidly applied that removes the system from equilibrium and the time needed

to reestablish the initial state is determined. For the model ® rst-order isomerization

reaction the measured relaxation rate will be the sum of the forward and reverse
rates

kobs = k1 + k 1. (3.10)
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We now show that the single eigenstate rotational spectroscopy technique is analo-

gous to relaxation techniques.

First of all, we point out that we can think of a f̀ully mixed’ quantum state as

an equilibrium situation. Speci® cally, the quantum state is a solution to the time-

independent Schr Èodinger equation and is, therefore, stationary. Furthermore, if we

use the de® nitions of total probability as de® ned in equations (3.2)± (3.4), then the
ratios of the Type I and Type II probabilities in the quantum state will simply re¯ ect

the microcanonical equilibrium constant of the reaction.

To take the quantum state out of equilibrium we can apply a pulse of radiation.

In particular, consider the case where the rotational spectrum of the eigenstate has
Type I and Type II resolved spectra (as illustrated in ® gure 15, this can be achieved

by going to a higher rotational transition if necessary) [62]. Furthermore, let the

frequency spectrum of the light pulse cover only one characteristic region of the spec-

trum (say, Type I). Because the rotational spectrum extends over several molecular

eigenstates, the light pulse will create a superposition state. This superposition state

will then undergo k̀inetics’ and evolve in time. With regards to the isomerization
reaction, we are interested in the structural properties during this time-evolution.

To quantify the structural properties of the time-evolving superposition state we

use the probability de® nitions de® ned in equations (3.2) ± (3.4). In relation to chemical

kinetics, these probabilities behave as the concentration. To follow the isomerization
reaction, these c̀oncentrations’ are calculated as a function of time by the following

prescription

Prob TypeI(t) =

N TypeI

p=1

 I
p W (t)

2
. (3.11)

An analogous expression can be written for the time evolution of the total probability

of ® nding the molecule in a zeroth-order basis state that has structure II. The results
for the two-structure model are shown in ® gure 16 [62]. When the light pulse can

diŒerentiate between the two structures, the initial superposition state is localized

in a single structure. The light pulse has p̀rojected out’ a single structure from the

mixed state. However, structure localization is not an èquilibrium’ condition and we

® nd decay of the probability back to the initial condition as the superposition state

d̀ephases’. Going back to the model Hamiltonian for the problem, we can de® ne the
forward and reverse rates of the reaction using Fermi’s Golden Rule

k1 = 2 p W 2
I II q II, (3.12)

k 1 = 2 p W 2
I II q I. (3.13)

Using these de® nitions we ® nd that the decay to equilibrium occurs with a rate that
is the sum of the forward and reverse rates.

This interpretation of the problem shows how the microcanonical rate constant

determined from the rotational spectrum of a single eigenstate can be related to the

interaction terms of the Hamiltonian. Furthermore, by appealing to the time-domain
picture we can connect the intramolecular dynamics to the usual chemical kinetics

picture. However, we should again point out the diŒerent view of isomerization

that we obtain from spectroscopy. In classical kinetics we would consider that there

are two separate populations of molecules that are interconverting. At any given

time, each molecule would have either structure I or structure II. However, for the
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Figure 16. The kinetics for a two-state isomerization problem are presented. The IVR lifetime
for interactions between states with the same structure (T2, equation (3.8)) is set at
60 ps. This lifetime will be observed in the survival probability calculated from the
vibrational spectrum (a). In the two-state model, there is also a characteristic time scale
for energy ¯ ow between the structures (T1, equation (3.7)). In (b), the isomerization
dynamics following vibrational excitation are determined using equation (3.11) at four
diŒerent T1 values (a ± d). Following bright-state excitation (which has structure I), the
total Type I probability decays to the equilibrium value of 0.5. The rate for approaching
equilibrium is given by equation (3.10) using the relations of equations (3.12) and
(3.13). Simple exponential decay at the sum of the forward and backward rates
of isomerization is indicated by the dotted lines in (b). Notice that the time scale
for isomerization is slower than that for IVR so that there is little change in the
vibrational survival probability dynamics. By contrast, the width of the eigenstate
rotational spectrum, as measured through its survival probability (c), does track
the isomerization dynamics (d). After coherent excitation of the Type I rotational
spectrum, the molecule assumes the Type I structure (the probability of being in a
Type I state is unity (panel (d)). This probability decays to the equilibrium value of
0.5 on a time scale determined by equation (3.10).

Hamiltonian kinetics we are considering the dynamics of a single molecule. Initially

it has neither structure I nor structure II but, in a sense, is a superposition of the

two. Through coherence properties, a short light pulse can relocalize the molecular

geometry if the spectrum is resolved for the two forms. However, the molecule

with well-de® ned structure above the barrier is not an equilibrium state and this
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geometry localization decays at the relaxation time given by the sum of the forward

and reverse rates.

4. Applications to kinetics

In this section we present a concrete example of the application of the single

eigenstate rotational spectroscopy technique to the problem of conformational iso-

merization. The example we will use is our recent measurements of trans–gauche
isomerization of chlorobutyne (4-chlorobut-1-yne ) at 3331 cm 1 [10, 103]. For this

molecule, we ® nd that the microcanonical rate constants are about 800 times slower

than predicted by RRKM theory. The violation of RRKM theory for this class of

reactions is likely to be common [104, 105]. Therefore, conformational isomerization

is a problem where a full dynamical theory is required to describe the kinetics.
Finally we conclude this section, and the review, with some comments about the

generalization of our method to other forms of spectroscopy and how this can be

used to address fundamental problems in kinetics and laser chemistry.

4.1. An example of conformational isomerization measurements: 4-chlorobut-1-yne
To demonstrate the features of the rotational spectroscopy of single eigen-

states in the case where isomerization occurs, we present our recent results on

chlorobutyne [103]. There are no previous reports of the pure rotational or vibra-

tional spectroscopy of chlorobutyne , so our analysis relies extensively on ab initio
calculations of the molecular structure and vibrational normal-mode frequencies.

The one-dimensional (1D) torsional potential for conformational isomerization of
chlorobutyne is shown in ® gure 17. The potential was calculated at the HF/ 6-

31+G** level using Gaussian 98 [106]. At a series of ® xed torsional angles, the

energy is calculated with geometry relaxation of all other internal coordinates. A

number of the torsional energies for the 1D problem are included in the ® gure 17.

These energies are calculated by solving the 1D Schr Èodinger equation in a free
rotor basis set. The internal rotation constant (F ) is ® t to a Fourier series using the

geometries from the ab initio calculations [88]. Previous studies of large amplitude

torsional motion have shown that current ab initio methods provide an accurate

description of the spectroscopy [86, 86]. In this potential, the lowest energy structure

is the trans conformer. This result is in agreement with our molecular beam mea-

surements where we have only been able to observe spectra for this conformation
(in both the vibrational and pure rotational spectrum).

From the ab initio vibrational frequencies, we can calculate the total vibra-

tional state density of chlorobutyne near the acetylenic C± H stretch fundamental

(3331 cm 1). In this calculation, we categorize the quantum states based on their

torsional properties using the model shown in ® gure 4. The distribution of vibra-
tional states near 3331 cm 1 is given in table 1. In the high-resolution rovibrational

spectrum of chlorobutyne we ® nd that the measured total vibrational state density

is close to the total state density listed in table 1. This agreement provides indirect

evidence that isomerization, de® ned as the interaction between the trans and gauche
conformer states, occurs at this energy [107, 108]. Using the ab initio vibrational
frequencies and the torsional energies from the 1D calculation, we can predict the

conformational isomerization rate using the standard formula from RRKM theory:

1 1013 s 1 ( s isom = 0.1 ps).

The central portion of the high-resolution infrared spectrum of the predomi-

nantly a-type acetylenic C± H stretch spectrum of chlorobutyne is shown in ® gure 18.
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396 J. Keske et al.

Figure 17. The torsional potential for 4-chlorobut-1-yne, determined by ab initio methods, is
shown. The torsional energy levels shown on the potential are calculated from the 1D
Schr Èodinger equation for hindered internal rotation. The more stable (trans) and less
stable (gauche) conformations are shown. The barrier to trans–gauche isomerization
is approximately 1500 cm 1.

Table 1. Density of states at 3330 cm 1.

Trans 89 states cm 1

Delocalized 11 states cm 1

Gauche 59 states cm 1

Total 158 states cm 1

Measured 180 states cm 1

The ground state of this spectrum has the trans conformation. Within the model of

® gure 4, the zeroth-order spectrum involves a transition to the lowest torsional level

of the acetylenic C± H stretch adiabatic potential. As a result, the rotational band

contour of the spectrum will be characteristic of the trans conformation. This eŒect
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Molecular rotation in the presence of IV R 397

Figure 18. The central portion of the a-type rovibrational spectrum of the acetylenic C± H
stretch of chlorobutyne is shown, with the Q-branch occurring at 3331.75 cm 1. The
resolution of the spectrometer is 5 MHz (0.0002 cm 1). The rotational ® ne structure
is typical for a near-prolate asymmetric top molecule and has a spacing that matches
the rotational constants of the more stable trans conformer (B + C = 0.1 cm 1).

is observed through the characteristic P- and R-branch spacings (B+ C) of 0.10 cm 1.

For comparison, this spacing in the gauche conformer is predicted to be 0.14 cm 1.

The infrared spectrum of chlorobutyne has several types of inhomogeneous conges-
tion that prevent clean excitation of a single eigenstate at the 5 MHz resolution of

our spectrometer. These contributions are rotational congestion from the tight level

structure of a near prolate asymmetric top, the presence of two chlorine isotopes,

and the hyper® ne splitting from the chlorine nucleus (I = 3/ 2 for both 35Cl and
37Cl) [1].

Using ground-state microwave-infrared double-resonance spectroscopy we can

obtain the high-resolution infrared spectra with rotational, hyper® ne and isotope

selectivity [8]. Example double-resonance spectra are shown in ® gure 19. From these

spectra we can determine the survival probability for coherent vibrational excitation
of the acetylenic C± H stretch of the trans conformer. The time scale for the decay of

the survival probability, i.e. the rate of IVR, sets an upper limit to the isomerization

rate following short-pulse infrared excitation. For chlorobutyne, the IVR rate is

approximately 3.3 108 s 1 ( s ivr = 3000 ps). This rate is 4 orders of magnitude

slower than the calculated RRKM rate.

To directly detect the isomerization process we perform rotational spectroscopy

on single eigenstates near 3331 cm 1. To prepare single-eigenstates we use upper-state

microwave-infrared double-resonance spectroscopy [76]. In these measurements, the
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398 J. Keske et al.

Figure 19. (a) The R(4) region of the a-type acetylenic C± H stretch rovibrational spectrum.
In this region there is extensive overlap of transitions from diŒerent rotational quan-
tum numbers, isotopes, and Cl-hyper® ne components. (b) Using infrared-microwave
double-resonance spectroscopy, the spectrum of a single rovibrational transition (and
single isotope and hyper® ne component). From this spectrum, the IVR lifetime (3 ns,
(c)) is determined from the survival probability (equation (1.5)). The IVR rate of the
bright state obtained in this measurement provides an upper limit to the conforma-
tional isomerization rate following coherent vibrational excitation of the acetylenic
C± H stretch of the trans conformer.

infrared laser is actively stabilized to a strong absorption feature (which involves
the overlap of a few molecular eigenstate transitions). The strongest eigenstate

transitions under the infrared line shape can be saturated. An amplitude modulated

microwave source is then scanned to produce a double-resonance spectrum with

higher frequency resolution (300 kHz). A portion of the double-resonance scan,

and comparison to the infrared spectrum in the same energy region, is shown in
® gure 20. Through this double-resonance excitation, single eigenstates with known

total angular momentum quantum number can be prepared.

Finally, using a second, high-power microwave source, the rotational spectrum

of the single eigenstate is measured through an infrared± microwave± microwave

triple-resonance experiment [10]. One new feature of the rotational spectroscopy of

structurally mixed states is the need to determine whether a transition reaches a ® nal

quantum state that is higher or lower in energy. For pure rotational spectroscopy this
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Molecular rotation in the presence of IV R 399

Figure 20. To ensure single eigenstate excitation in the chlorobutyne spectrum, it is neces-
sary to use infrared-microwave double-resonance spectroscopy methods. This ® gure
compares J = 3 J = 4 rotational spectrum of the strongest feature in the P(4)
spectrum with the infrared spectrum of the J = 4 acetylenic C± H stretch bright state
(upper trace). The resolution in the double-resonance spectrum is 0.3 MHz compared
to the infrared resolution of 5 MHz.

information can be determined based on the rotational spectrum pattern. However,

in the case where contributions from diŒerent conformations can lead to rotational

transitions there can be ambiguity. In this chlorobutyne example, when measuring
the spectrum of an eigenstate with J = 4, we expect that the frequency for a

D J = +1 transition from the trans contribution will lie in the same frequency range

as a D J = 1 transition of the gauche conformer. Our triple-resonance technique

allows us to determine the s̀ign’ of the observed transition frequencies. Additionally,

the method provides a direct measure of the square of the transition moment

independent of which eigenstate is probed.

Examples of the J = 4 J = 3 rotational spectra for four diŒerent single

eigenstates are shown in ® gure 21. The rotational spectra of these eigenstates are

much richer than the single transition frequency spectra associated with low energy

rotational motion. The presence of IVR and isomerization leads to spectra that
cover a wide range of frequencies ( 10 GHz). A composite spectrum, obtained by

simply combining the four spectra of ® gure 21, is shown in ® gure 22. In this ® gure

we also show the composite spectrum of the J = 4 J = 5 transitions. The

D J = +1 and D J = 1 composite spectra (® gure 22) originate from the same set

of eigenstates. Note that the two spectra overlap in frequency. The observation of
rotational transitions from a single eigenstate at frequencies characteristic of both

the trans and gauche conformers clearly demonstrates that these eigenstates contain

contributions from zeroth-order states associated with both conformers. As indicated

by the calculation presented in ® gure 14, the isomerization rate can be determined

by analysing the overall line shape pro® le of the single eigenstate spectra. In both
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400 J. Keske et al.

Figure 21. Four examples of the rotational spectrum of a single quantum state of chlorobu-
tyne are shown. The eigenstates all have rotational quantum number J = 4 and
are prepared through double-resonance spectroscopy (the 11 802 MHz transition in
® gure 20 yields the spectrum shown in (a)). Only transitions to lower energy quantum
states (i.e. J = 4 J = 3) are shown. By comparing the observed frequencies to those
calculated in ® gure 12, it is clear that each single quantum state contains contributions
from both trans and gauche zeroth-order states.

transitions of ® gure 22 we show the predicted line shape pro® le for an isomerization

rate of 1.2 1010 s 1 ( s isom = 84 ps).

The eŒects of isomerization on the rotational spectrum are further illustrated in

® gure 23. In this ® gure we show the rotational spectrum that would be expected in the
case of very slow isomerization. To calculate this spectrum we predict the rotational

transition frequency for each torsional state of the 1D potential. These frequencies

are calculated by determining the average rotational constants for the torsional

state using the ab initio values of the rotational constants at each diŒerent torsional

angle [67, 68, 90, 96]. This model assumes that the main vibrational dependence
of the rotational constant is given by the torsional contribution. The method of

calculating rotational constants by averaging over the large amplitude wavefunction

has been used successfully to describe the rotational spectra of molecules with an

isomerization coordinate [90, 96] and weakly bound complexes [67, 68]. The solid

line in ® gure 23 shows the overall line shape pro® le in the presence of isomerization
(this pro® le is the same as the one in ® gure 22). The changes in the rotational

spectrum indicate the approach to coalescence in the rotational spectrum.

One interesting result of this study is the fact that the isomerization rate from the

single eigenstate rotational spectroscopy (1.2 1010 s 1) is signi® cantly faster than

the upper limit rate determined from the survival probability of the acetylenic C± H

stretch (3.3 108 s 1). However, the single eigenstate result is still signi® cantly slower
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Molecular rotation in the presence of IV R 401

Figure 22. The trans–gauche isomerization rate for chlorobutyne can be determined by
analysing the overall line shape pro® le of the single eigenstate rotation spectra (see
® gure 14). For the analysis, the spectra for all four states of ® gure 21 are combined to
give a composite spectrum. The overall line shape pro® le for both the J = 4 J = 3
and the J = 4 J = 5 is shown by the solid line for an isomerization lifetime of
84 ps. The arrows in the ® gure indicate the expected rotational frequencies for the
ground state trans and gauche conformers.

than the RRKM value (1 1013s 1). The comparison of the two measurements

shows that the isomerization process is strongly mode-speci ® c in chlorobutyne.

In other words, the observed isomerization rate depends critically on how the

vibrational energy is initially distributed within the molecule (e.g. localized in a

single bond (infrared bright-state measurement) or redistributed throughout the
molecule (single eigenstate measurements)). Previous theoretical work has suggested

that isomerization reactions, as a class, will violate RRKM predictions [104, 105].

Our work on chlorobutyne [10, 103] and 2-¯ uoroethanol [9] supports this result.

4.2. Generalizations of the method
In this review, we have focused on the description of the rotational spectroscopy

of quantum states in energy regions where state-mixing is extensive. When the

molecule is in an energy region where intramolecular dynamics occur, the description

of the spectroscopy must include the eŒects of nuclear motion. These eŒects are

not required for the low-energy quantum states investigated in the vast majority
of spectroscopy studies and so are often omitted from molecular spectroscopy

treatments [1, 2, 14, 15]. As illustrated in the previous section, the fact that motion,

such as isomerization, has such drastic eŒects on spectral line shape means that

frequency-domain techniques can be used to obtain quantitative kinetics data.

Although we have presented the rotational spectroscopy problem, the general

ideas are valid for any form of spectroscopy. In fact, many of the basic issues of IVR

exchange narrowing have been studied for vibrational spectroscopy in the context of
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Figure 23. This ® gure further illustrates how the isomerization dynamics have modi® ed the
overall line shape pro® le of the single quantum state rotational spectra. The smooth
solid curve shows the overall line shape observed in the experiment (see ® gure 22)
and corresponds to an isomerization lifetime of 84 ps. Underneath this curve we
show the zeroth-order distribution of rotational frequencies expected at 3330 cm 1.
This distribution is calculated by using a direct state count algorithm to identify all
quantum states near 3330 cm 1 and then estimating their rotational frequency based
on the torsional wavefunction using the calculation of ® gure 12. The observed line
shape pro® le shows the f̀requency pulling’ eŒects of the coalescence phenomenon
(® gure 14).

infrared multiphoton excitation [49, 50, 51, 52]. In terms of isomerization reactions,
other forms of spectroscopy, such as vibrational spectroscopy of structurally mixed

states, oŒer signi® cant advantages. For conformational isomerization reactions, the

vibrational frequencies of the molecule depend on the molecular structure. The

frequency diŒerences for some normal-mode vibrations can diŒer by 10 cm 1 or

more for the diŒerent geometries [35, 36, 37]. This magnitude of transition frequency

diŒerence would be useful for kinetics measurements in the case where there is
exceptionally fast isomerization.

For higher energy isomerization reactions, such as the ones indicated in ® g-

ure 24, single eigenstate spectroscopy can provide new insight into the kinetics. This

approach holds the possibility, for example, of measuring the vibrational spectrum

of the transition state geometry. For reactions such as the propene/ cyclopropane

reaction, the characteristic vibrational frequencies of the stable isomers are quite
distinct. The emergence of transition state vibrational features should be readily

apparent. These spectra would be expected to reveal new information about the

microcanonical rate constants and the reaction pathway for these fundamental re-

actions. In this way, frequency-domain techniques can be used to obtain information

on the structure and dynamics of the transition state.
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Figure 24. This ® gure shows some typical high-barrier isomerization reactions of general
chemical interest. In all cases, the isomerization reaction proceeds without unimolecu-
lar dissociation. As a result, the molecular eigenstates will be discrete. Each molecular
eigenstate will contain contributions from the zeroth-order reactant, product and
transition state structures. For example, structurally mixed quantum states of the ® rst
reaction are expected to simultaneously show properties of the closed cyclopropane
structure and the open propene structure. Frequency-domain spectroscopy of these
structurally mixed states can be used to study the kinetics of this class of reactions
through the spectroscopic eŒects described in this review.

Measurements of the spectroscopy of structurally mixed states of high-barrier

reactions will challenge our chemical ideas about molecular structure. For example,

the simple Claissen rearrangement of ® gure 24 (c) remains bound at all times. There-

fore, the eigenstates at high energy must, in a sense, be simultaneously aldehyde-like
and ether-like. In this reaction, obtaining the electronic spectrum of the mixed-states

would be an interesting measurement since it should clearly distinguish the aldehyde

and the ether contributions to the eigenstate.

Finally we suggest that the spectroscopy of structurally mixed quantum states

opens up new avenues for performing selective chemistry with lasers. The traditional
approach to laser chemistry has been to pursue bond-localized excitation to achieve

bond-selective reactivity [109]. In principle, this approach is valid as demonstrated

by the work of Crim and co-workers using small polyatomic molecules [110, 111].

However, for large molecules the time scale for energy localization in a bond is

typically too short to permit a reactive encounter with the energy-localized molecule.

As an alternative, one can direct the outcome of a wide range of chemical

reactions by controlling the geometry of the reactant [112, 113]. Therefore, the

control of the molecular structure can be converted into reaction product control.

In this approach, the properties of structurally mixed quantum states are potentially

useful. As discussed in the previous section, it is possible to `make’ any structure
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of the molecule that is expressed in the wavefunction using light pulses that can

distinguish the diŒerent geometries. The basic idea that the variation of absorption
frequencies can be used to distinguish isomers has been used to reversibly drive

several isomerization reactions using infrared multiphoton excitation [114, 115, 116,

117, 118]. The advances in laser technology since these experiments now permits

much more precise control over the excitation sequence. This improved control

should make it possible to manipulate molecular structure and, therefore, chemical
reactivity, using simple laser pulse sequences.

5. Conclusions

The general trend in molecular spectroscopy is the development of techniques

to study larger molecules at higher energy [21, 23, 24]. In this pursuit, important

new features of intramolecular dynamics aŒect the appearance of the spectrum.

For example, the IVR process leads to fragmentation of the transition intensity

across several molecular eigenstates. The interpretation of this eŒect, as described
by ® gure 1, is now a well-known problem in molecular spectroscopy [24]. In this

review, we have described a new type of methodology that considers the spectroscopy

between molecular eigenstates in an energy region where IVR occurs. Here new

features show up in the description of the spectroscopy between the highly mixed

states that result from IVR. During the rotational motion of the molecule it is now

necessary to consider the nuclear motion that accompanies vibrational energy ¯ ow
and isomerization. These eŒects are not encountered in the low energy regime where

regular, near-harmonic vibration occurs on a time scale that is rapid compared to

rotation. In this regime, the eŒects of nuclear vibrational motion during rotation can

be included through the vibrational dependence of the rotational constant. In the

regime we have considered, the vibrational energy ¯ ow leads to dramatic departures
from traditional rotational spectroscopy. These new eŒects in the single eigenstate

rotational spectra are described using the motional narrowing theories from NMR

spectroscopy.

Rotational spectroscopy in the IVR regime is especially useful for measuring the

kinetics of unimolecular isomerization reactions. Because these reactions do not lead

to dissociation, the molecular quantum states remain discrete. Within the zeroth-
order model that separates small amplitude normal-mode vibrations from nuclear

motion along the isomerization coordinate, as depicted in ® gure 4, isomerization

leads to eigenstates that are s̀tructurally mixed’. Each individual quantum state

contains contributions from the reactant, product and transition state structures.

Through the structural-dependence of the rotational frequency, it is possible to
probe these separate contributions to the quantum state. In this way it is possible

to measure the rotational spectrum of reactive intermediates and transition states

using frequency-domai n techniques. In the near future, we expect that this form of

spectroscopy will be extended to study reactions at higher energy. DiŒerent types of

spectroscopy measurements on highly mixed states, such as performing vibrational
or electronic spectroscopy, are also expected to see development in this direction.

Finally, because the spectroscopy in the presence of IVR shares many features

with NMR spectroscopy, the development of time-domain techniques [119] should

provide improved methods for extracting the intramolecular dynamics and, possibily,

for manipulating nuclear geometry and motion.
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